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Abstract. We propose a two-stage, stochastic model of heavy-ion reactions. Nucleons becoming participants
by mean-field effects or by nucleon-nucleon interactions are transferred to definite final states, creating
a PLF, a TLF, clusters, or escaping to continuum. Nucleon transfer probabilities are governed by state
densities. In this way different hot particle sources are created which afterwards decay by particle emission.

PACS. 24.10.-i Nuclear-reaction models and methods – 25.70.-z Low and intermediate energy heavy-ion
reactions – 25.70.Lm Strongly damped collisions – 25.70.Pq Multifragment emission and correlations

1 Introduction

The heavy-ion reaction picture is not a simple one, espe-
cially at higher collision energies where the multiplicity of
emitted particles increases strongly. At low energies, one
observes the emission of light particles plus an evapora-
tion residue or a pair of fission fragments. With increasing
energy, the ejectile yield gradually turns into a mixture of
light particles and intermediate mass fragments (IMFs,
Z > 2), and finally is uniquely composed of light particles
(see [1,2] and references cited therein).

The reaction mechanism also varies considerably with
increasing collision energy. At lower energies, one encoun-
ters peripheral or deep inelastic collisions for larger im-
pact parameters, and incomplete fusion (or fusion-fission)
for more central collisions. At higher energies, in addition
to the projectile-like fragment (PLF) and the target-like
fragment (TLF), an intermediate velocity source (IVS) ap-
pears, located between the PLF and the TLF. At suffi-
ciently high energies this IVS absorbs most of the dissi-
pated energy, while the PLF and the TLF turn into spec-
tators. In central collisions at sufficiently high energies
heavy ions turn into a gas of light particles in a process
called vaporization.

In each of these phenomena, nucleons change their ini-
tial attachment and energy is dissipated. Energy dissipa-
tion is expected to be rather one body for lower energies,
because of Pauli blocking, but should become two body
at higher energies, when Pauli blocking is less effective.
Near the Fermi energy, both energy dissipation scenarios
can be expected to compete.

In order to test our understanding of the heavy-ion re-
action mechanism in this energy range, experimental re-
sults are compared to predictions derived from various
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models. One approach uses semi-classical dynamic calcu-
lations performed on the microscopic level, e.g. BUU [3],
VUU [4], BNV [5], LV [6], molecular dynamics calcula-
tions [7], fermionic molecular dynamics (FMD) [8], an-
tisymmetrized molecular dynamics (AMD) [9], etc. Such
calculations are rather time consuming, however, and not
always successful in providing a detailed description of
experimental data. Consequently, these methods are fre-
quently replaced by simpler models, which are quite sat-
isfactory in reproducing results of various measurements
related to damped collisions and explaining details of the
reaction scenario. This will be the approach adopted in
the present paper.

The model proposed here belongs to a family of mod-
els that includes, for example, those of Harvey [10] and
Cole [11], Tassan-Got and Stéphan [12], Durand [13], and
Sosin et al. [14], based on the Randrup assumption [15]
that for higher collision energies, energy dissipation pro-
ceeds mainly through stochastic transfer of nucleons be-
tween colliding ions. The presented model is an extension
of those proposed by Cole [11] and by Sosin et al. [14].

In Cole’s model [11], the outcome of a peripheral
nucleus-nucleus collision is considered to be the result of
a random walk in the projectile mass. The number of
“steps” is obtained from the Poisson distribution around
the average number of NN collisions calculated within the
optical limit of Glauber’s theory. The NN collisions take
place along a trajectory describing the relative motion of
projectile and target. The PLF deflection is produced in
part by the potential acting between colliding ions, and in
part by the recoil effects caused by mass exchange. The
Cole model predicts the mass distribution and also the
angular distribution of the PLFs. As for the energy spec-
tra, only the mean energy of a fragment is calculated, as
a function of the laboratory angle.
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In an extension proposed by Sosin et al. [14] a random
walk in the three dimensions of the momentum transfer
has also been included, in addition to the random walk in
the projectile mass. The de-excitation of the hot PLF and
TLF is described by binary decay. In this version of the
model it is possible to calculate in a self-consistent manner
both the energy and the angular distributions of emitted
particles, given as functions of probabilities P+ and P−,
that in an elementary interaction the projectile gains or
loses a nucleon. P+ and P−, treated as free parameters,
have generally been expected to be dependent upon the
collision impact parameter (entrance channel angular mo-
mentum).

2 Description of the model

The model (and its computer realization: the PIRAT
Monte Carlo code) presented in this paper treats the
heavy-ion collision as a chain of steps. The final result of
this chain of steps is governed, on the average, by the max-
imum value of the thermodynamic probability (entropy),
but fluctuations characteristic of the stochastic process are
also taken into account. The thermodynamic probabilities
are related here to the distribution of the density of states
of different subsystems taking part in the collision. Us-
ing this model, one can describe the creation and decay
of different hot sources of particles, such as the PLF, the
TLF and the IVS. The model allows for competition be-
tween the mean-field effects and the NN interactions in
the overlap zone of colliding nuclei.

In the model a two-stage reaction scenario is assumed:

i) In the first stage, a number of nucleons becomes re-
action participants as a result of mean-field effects
and/or two-nucleon (NN) interactions. The participat-
ing nucleons are virtually free.

ii) In the second stage, participating nucleons are trans-
ferred to definite states, creating finally a PLF, a TLF,
or clusters. They can also escape into continuum. In
the PIRAT code this process is treated as a chain of
steps.

2.1 First stage: mean-field mechanism

In the mean-field mechanism one of the nucleons of the
projectile nucleus (P) or target nucleus (T) becomes a par-
ticipant when runs across a potential window which opens
in the region between the colliding heavy ions. The degree
and duration of opening depends on the proximity and rel-
ative velocity of the heavy ions on their classical Coulomb
trajectories. By using parabolic approximation (see, e.g.,
Tassan-Got and Stéphan [12]) one obtains the values of
the potential barrier transmission probability across the
window. For a given heavy-ion impact parameter, bHI, the
average number of nucleons crossing the potential window
〈ncr〉 is calculated. The P and T nucleons are treated as a
Fermi gas. For each bHI, the number of participating nu-
cleons is obtained by a Monte Carlo procedure from the
Poisson distribution around 〈ncr〉.

2.2 First stage: two-nucleon mechanism

In the NN mechanism two nucleons, one from the P and
the second from the T, collide in the overlap zone of the
P and T nuclei, where for larger collision energies and/or
larger collision parameters the Pauli principle becomes less
restrictive. The nucleons of such a pair become reaction
participants. The probability of a NN collision depends on
the NN interaction cross-section, the convolution of the P
and T densities in the overlap region, and the available
momentum space.

For a given bHI and with no Pauli blocking, the average
number of NN collisions per event, 〈nij(bHI)〉, is calculated
in the modified optical limit of the Glauber theory, along
the heavy-ion trajectory in the entrance channel potential.
Here, i, j denotes n (neutron) or p (proton), respectively.

〈nij(bHI)〉 = (IiIj)/(APAT)
∫

dt v(t)

×
∫

d3rσij(E(t))ρP(r−rP(t, bHI)) ρT(r−rT(t, bHI)), (1)

where rP(t, bHI), rT(t, bHI) define the CM positions of the
colliding ions, and ρP, ρT the corresponding matter den-
sity distributions. The NN interaction cross-section, σij ,
depends on the colliding pair i, j and on the average rela-
tive NN energy, E(t). This energy is a function of the av-
erage nucleon energies inside the P and T nuclei and of the
relative P-T energy, which depends on the P-T distance.
The relative P-T velocity, v(t), (t denotes time) is calcu-
lated from the entrance channel interaction potential. The
scaling factor in (1) depends on the projectile and target
nucleus mass numbers AP, AT and on the number Ii or Ij ,
of “i” or “j” nucleons in the P or T nucleus, respectively.

When the interaction of heavy ions is neglected one ob-
tains straight lines instead of the entrance channel heavy-
ion trajectories (as in the original Glauber theory) and a
result different from (1) (see Karol [16]).

In order to calculate the distribution of nij and to take
into account the Pauli blocking effect, the following proce-
dure is applied. The nucleons inside heavy ions are treated
as a Fermi gas with the Fermi momentum proportional to
ρ1/3. Each nucleon obtains initial position and momentum
in a Monte Carlo procedure taking into account the P and
T matter density distributions.

The distribution of nij is given by the NN collision
probability Pij , calculated for all pairs of nucleons, and
for the Pauli blocking effect checked each time.

Pij = C(bHI) exp
[
−(bNN/21/2σ)2

]
(1 − PB). (2)

Here bNN is the NN collision parameter and σ = Kσ0.
This Gaussian (2) has a half-width, 2.35σ, of two fermi
(about 2RN, where RN is the nucleon radius) multiplied
by K, a factor taking into account the isospin dependence
of σNN. K2 = σij/σnp. The Pauli blocking factor (1−PB)
is equal to unity when after a NN collision the nucleons
find free places in the momentum space. Otherwise, (1 −
PB) = 0. Isotropy is assumed in the post-collision velocity
distributions of the NN pairs. The value of the normalizing
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factor C(bHI) is obtained from a condition, that for (1 −
PB) = 1, the average number of NN collisions per event,
〈nNN〉, calculated from (2) should be the same as for (1).

2.3 Second stage: nucleon transfer

In the second stage, participating nucleons are transferred
to different objects of the system consisting of the pro-
jectile remnant (PR), the target remnant (TR), clusters
and other participating nucleons. Creation of clusters be-
gins from the coalescence of two participating nucleons.
Each transfer changes the state of the system. The tran-
sition probability may be calculated from the Fermi rule:
Pik = (2π/�)|Tik|2ρk. It is argued (see, e.g., Gross [17])
that the final density of states, ρk, is usually the dominant
factor and the square of the T matrix is roughly constant.

Similarly as in the micro-canonical approach (see, e.g.,
Gross [17]) we assume that all permitted micro-states
are equally probable. In the Gross model, the permitted
micro-states have to obey the conservation laws of the to-
tal energy, momentum, and angular momentum, baryon
and charge numbers. In our model, the accessible phase
space is additionally limited by the constrains: i) the exist-
ing projectile and target remnants may only absorb par-
ticles; ii) the PR, TR, and cluster momenta and angular
momenta are determined by the nucleon transfer process.

The PIRAT code probes the accessible phase space
in the following way. The nucleon transfer is treated as
a stochastic process with the number of steps equal to
the number of participating nucleons, n. The participating
nucleons obtain their label numbers randomly, from 1 to
n. The same numbers are used to label the consecutive
steps of the stochastic process chain.

The final result of a heavy-ion collision depends on the
options chosen in each step by participating nucleons. The
possibilities include:

– re-creation of the bond with the mother nucleus;
– creation of a bond with the other nucleus, another par-

ticipating nucleon, or a cluster of participating nucle-
ons produced in an earlier step.

In step k, a nucleon with the label k may join the
TR or the PR or a nucleon with a k′ > k label. All the
k′ < k nucleons have been taken into account in the earlier
steps of the process chain. Alternatively, nucleon k may
remain free and join the group of particles of intermediate
velocity. In fact, nucleon k could be joined in the earlier
steps by a certain number of participating nucleons. In
such case it is cluster k, rather than participating nucleon
k, which exercises the different options possible for step k.
This coalescence process leads to the formation of larger
clusters in the gas of participating nucleons. At the end of
the stochastic process (chain of steps) one gets the PLF,
the TLF and the remainder of the gas of participating
nucleons will form the intermediate velocity source, IVS.

After each reaction step, four regions of the phase
space are accessible for participating nucleons:

1) the TR phase space;
2) the PR phase space;

3) the phase space of the participating nucleons that
are treated as an excited nucleon fermion gas (NFG);

4) the phase space of clusters (CL) created in the ear-
lier steps.

A participating nucleon (cluster) in step k may exercise
one of j different options (1 < j < (n−k+2)) correspond-
ing to phase spaces (1) to (4), each with a thermodynamic
probability Ω(k, j). In order to obtain the Ω(k, j) values,
the PIRAT code computes the density of states for each
object which is present at step k.

For internal degrees of freedom, the density of states
of the TR, PR, CL and NFG objects (after joining a par-
ticipating nucleon) is calculated as for a Fermi gas:

∆Ωi =
(2si + 1)π1/2

12a
1/4
i E

5/4
i

exp
[
2(aiEi)1/2

]
, (3)

where i denotes TR, PR, CL or NFG, respectively, si is the
fragment spin and Ei is the thermal component of its exci-
tation energy. The density of states parameter ai = Ai/εi.
Here Ai is the mass of the subsystem, and εi denotes a
parameter which in general depends on Ai and Ei (see
Bonche et al. [18]). Equation (3) is used for fragments
with A > 3. Fragments with A < 4 are treated as cold
ones, similarly as in the Bondorf paper [19].

The excitation energy Ei has to be calculated for each
step k and option j of the chain of steps. For each (k, j) the
TR, PR, CL and NFG objects have certain ground-state
energies and momenta (kinetic energies), and interact with
each other via certain potentials. For the TR-PR interac-
tion it is the Coulomb plus proximity potential, and for
all other (i, j) pairs a potential defined as:

Vij(r) = (ZiZj/r) for r � Rint,

Vij(r) = (ZiZj/Rint) for r < Rint,

Rint = rint(A
1/3
i + A

1/3
j ). (4)

In the clusterization process, the clusters thus created
may sometimes overlap. It is assumed that they begin to
interact when their mutual distance is larger than Rint.
Their separation is insured by the fact that clusters are
born with individual velocities.

Summation of the ground state and kinetic energies
of fragments with their interaction potentials provides a
value of the total energy corresponding to the internal de-
grees of freedom (excitation energy) of the system. After
subtracting the total excitation energy of the step k − 1
one gains the reaction Q value, Q(k, j). The total energy
of the system is conserved along the chain but excitation
energies of particular subsystems vary according to the
Q(k, j) value. The Q(k, j) energy is divided among all the
involved subsystems having masses A > 4, with a proba-
bility proportional to the corresponding densities of states.

In order to obtain the Ω(k, j) values one must include
not only the internal degrees of freedom but also those
degrees of freedom corresponding to the translational mo-
tion. For the system of clusters and nucleons which already
left the NFG system, the translational motion density of
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states, ∆Ωtr
N,CL , may be calculated from the entropy Str:

∆Ωtr
N,CL = expStr, (5)

and

Str = − [
∂F tr/∂T

]
V,Ni

, (6)

where F tr is the free energy of translational motion and T ,
V , and Ni denote respectively temperature, volume, and
number of different particles of the system. Free energy
F tr is given as (see, e.g., [18]):

F tr = −T
∑

(A,Z)

{NA,Z ln[gA,Z(V/λ3
T )]A3/2

0 }

+T ln[(V/λ3
T )A3/2

0 ]. (7)

Here A, Z denotes the cluster (nucleon) mass and
charge number, respectively, A0 is the total mass number
of the multi-component gas, (N) + (CL), gA,Z is the de-
generacy factor of the ground state of a fragment (A < 5)
and λT is the nucleon thermal wavelength. The gA,Z = 1
value is assumed for A > 3. The T value is obtained from
the chaotic thermal component of the kinetic energy and
the corresponding number of degrees of freedom

λT = (2π�
2/mNT )1/2, (8)

and mN is the nucleon mass.
For PR and TR, the density of states corresponding to

relative motion, ∆Ωtr
PR,TR, is assumed to be proportional

to the PR-TR relative momentum and to their reduced
mass.

The thermodynamic probability Ω(k, j) is given now
by:

Ω(k, j) = ∆ΩPR(k, j) × ∆ΩTR(k, j)

×∆ΩNFG(k, j) ×
∏

(all CL)

[∆ΩCL(k, j)]

×∆Ωtr
CL,N(k, j) × ∆Ωtr

PR,TR(k, j). (9)

Dividing Ω(k, j) by

Ω(k) =
∑
all j

Ω(k, j), (10)

one obtains a set of normalized probabilities P (k, j). The
random number generator now selects one particular op-
tion (k, j) chosen by the participating nucleon (or cluster)
k with the probability P (k, j).

After applying the same procedure to each participat-
ing nucleon (cluster) k, one obtains the final path along
the chain of steps. Thus, the final result of this chain of
steps is governed, on the average, by the maximum value of
the thermodynamic probability, but fluctuations are also
taken into account.

After formation of all the fragments the PLF and TLF
may fuse. This happens when, due to the dissipation of en-
ergy and relative angular momentum, a “pocket” appears
in the PLF-TLF interaction potential and the energy of
the system is smaller than the potential barrier.

2.4 Angular momenta and spins

The angular momenta and spins, of the final reaction
products are calculated from the initial P (or PR) and
T (or PR) angular momenta, and from the angular mo-
menta of the participating nucleons involved. For the P
and T spins, the model assumes zero values. In order to
calculate the angular momenta of the participating nucle-
ons we assume that their momenta are distributed as in a
Fermi gas, and that the initial locations depend upon the
mean field and the NN interaction mechanism.

It is assumed that the participating nucleon k may join
a PR, a TR, or a cluster under two conditions:

i) The spin of the final system (nucleus or cluster) is
smaller than the maximum spin permitted for that system,
since otherwise nucleon transfer is impossible. The value
of the maximum spin is taken from one of the GEMINI
subroutines [20], extrapolated to the region Z < 10.

ii) The captured nucleon’s relative angular momentum
is smaller than a specified critical value Lcr, where Lcr =
βRnuclpF. Here Rnucl and pF denote the P (or PR) or T
(or TR) radius and Fermi momentum, respectively. β is a
coefficient with a value of the order of unity. This condition
determines the value of the maximum momentum of a
nucleon which can be captured by a nucleus.

2.5 Decay of excited fragments and Coulomb
trajectories

The decay of the excited fragments is simulated in the code
using the GEMINI [20] or alternatively the SIMON [21]
subroutine. Charged fragments produced according to the
above reaction scenario have individual initial velocities,
and are accelerated in the mutual Coulomb field along
proper trajectories which are integrated numerically [22].

3 Some numerical results

Competition between the mean-field process and the NN
process which produce participating nucleons is illustrated
by fig. 1, which represents the distributions of the number
of nucleons participating in the 40Ca +40 Ca reaction vs.
impact parameter bHI, and for different collision energies.
As can be seen, the mean-field effects are more important
at lower energies, while NN collisions dominate at higher
energies. The number of participating nucleons is generally
larger for more central collisions. The maxima observed
for mean-field nucleons result from an orbiting effect at
peripheral collisions. At higher collision energies the mean-
field nucleons disappear for central collisions because of
competition with the NN interaction.

The distribution of different reaction components in
the angular momentum space is presented in fig. 2 (40Ca
+ 40Ca reaction, 35 AMeV). The cross-section for the cre-
ation of a composite system occupies the region of small
impact parameters. Cross-sections for events containing at
least one IVS cluster with a mass larger than 16, 4, and 1,
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Fig. 1. Numbers of nucleons participating in the 40Ca +40 Ca
reaction vs. impact parameter, for different collision energies.
NN mechanism (solid line); mean-field mechanism (dashed
line).
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Fig. 3. Excitation energy of the IVS (black dots) and of the
PLF (or TLF) (open circles) vs. Z (a) or the angular momen-
tum (b).

respectively, are shifted towards higher angular momen-
tum values. It is clear that a deeper penetration of heavy
ions and a larger number of participating nucleons is nec-
essary in order to produce heavier clusters (fragments).

Some properties of the intermediate velocity source
and of the PLF (or TLF) source produced in the 40Ca
+ 40Ca reaction (35 AMeV) are exhibited in figs. 3 and 4.
As can be seen (fig. 3), the average excitation energy per
nucleon is almost independent of the IVS size (Z value). In
the case of the PLF (or TLF) it is nearly proportional to
the number of caught (or lost) nucleons, showing a min-
imum at Z = 20. For the PLF (or TLF) the excitation
energy decreases with the angular momentum, and for
the IVS increases for more central as well as for periph-
eral collisions. For more central collisions, there is enough
excitation energy for all three sources, due to the large
energy dissipation in the entrance reaction channel. For
peripheral collisions, the transfer of participating nucle-
ons (or clusters) to the PLF or the TLF is more difficult
because of the angular momentum limitations. In conse-
quence, the PLF and the TLF turn into spectators and
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the IVS absorbs most of the dissipated energy. The num-
ber IVS clusters generated at peripheral collisions is small
and their contribution to the average excitation energy,
for a specific Z value, is negligible.

The angular distribution of Z > 3 fragments origi-
nating from the IVS (fig. 4) is presented in the reference
frame oriented by the PLF and TLF. Here, θ is an angle
between the fragment velocity and the relative PLF-TLF
velocity. The distribution of the primary IVS fragments is
almost isotropic, while the secondary IVS fragments indi-
cate focusing in the PLF-TLF Coulomb field. The number
of the secondary IVS fragments is nearly an order of mag-
nitude lower, because in the evaporation process most of
the emitted particles have Z < 3.

It would be appropriate to ask how sensitive the
model predictions are to the values adopted for partic-
ular model parameters. Such parameters include, for ex-
ample: the critical angular momentum Lcr (coefficient β)
or the minimum Coulomb interaction radius (rint). Fig-
ure 5 shows model predictions for the fraction of the
total charge, ZIVS/(ZP + ZT), located in the intermedi-
ate velocity source, and presented vs. angular momentum
(40Ca +40 Ca at 35 AMeV). As can be seen, variations of
the β, and rint parameters give noticeable, though not dra-
matic modifications in the ZIVS/(ZP + ZT) distributions.
The model calculations presented in papers I and II [1,2]
were performed for β = 1.1, and rint = 1.2 fm.

4 Summary and final remarks

We have proposed a model describing heavy-ion colli-
sions, assuming a stochastic reaction mechanism and tak-
ing into account the creation of participating nucleons by
the mean-field effects as well as the NN interactions. The
nucleon transfer probabilities are governed by the state
densities, on the average by the maximum value of the
thermodynamic probability (entropy). Fluctuations char-
acteristic of the stochastic process are included in the re-
action picture.

The modular organization of the PIRAT computer
code facilitates its modification. For instance, a simpler
(but perhaps less physical) prescription can be used to se-
lect the participating nucleon final path along the chain of
steps without regard to fluctuations. In this mode, the par-
ticular options (k, j) taken by a participating nucleon (or
cluster) k are governed by the maximum value of entropy.
Similarly, one can assume that for each step k and option j
along the chain of steps taken by a participating nucleon,
the reaction Q(k, j) energy is divided among the partic-
ipating subsystems, proportionally to the corresponding
densities of states (without including fluctuations). Other
prescriptions for the excitation energy (Q value) partition
are also possible, such as that proposed by Wilczynski and
Wilschut [23].

Instead of the binary sequential decay of hot frag-
ments, which in the PIRAT code is simulated using the
GEMINI [20] or SIMON [21] subroutines, it is also pos-
sible to assume a prompt decay picture (for an example,
see [24]).

This model contains same numerical parameters hav-
ing an obvious physical meaning and their values used in
our calculations seem to be reasonable.

The predictions produced by this model have been
compared with experimental data on the 40Ca +40 Ca re-
action at 35 AMeV, an energy close to the Fermi energy.
Satisfactory agreement and a consistent picture of the re-
action mechanism were achieved. Both the properties of
the PLF (TLF) source and of the intermediate velocity
source were properly reproduced and explained (see [1]
and [2]). Comparison with different sets of experimental
data is in progress.

Dynamic effects are only partly included in the reac-
tion picture presented here, mainly in the process that se-
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lects participating nucleons and in the Coulomb focusing
of fragment trajectories. Phenomena related to the com-
pressibility of nuclear matter (nuclear matter equation of
state) are not taken into account. This does not seem to
pose a great obstacle, however, around the 35 AMeV or at
lower collision energy, where such effects are not of prime
importance (cf. the systematics of the radial expansion
energies [25]).
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The author thanks also A.J. Cole, J. Brzychczyk and A. Wie-
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demic Computing Center, CYFRONET (KBN Grant No.
S2000/UJ/158/1998).

References

1. R. P�laneta et al., this issue, p. 297.
2. Z. Sosin et al., this issue, p. 305.
3. J. Aichelin, G. Bertsch, Phys. Rev. C 31, 1730 (1985).
4. H. Kruse et al., Phys. Rev. C 31, 1770 (1985).
5. J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996).
6. C. Gregoire et al., Nucl. Phys. A 465, 317 (1987).
7. J. Aichelin, H. Stocker, Phys. Lett. B 176, 14 (1986).

8. T. Neff, H. Feldmeier, R. Roth, J. Schnack, Proceedings
of the 27th International Workshop on Gross Propereties
of Nuclei and Nuclear Excitations-Multifragmentation,
Hirschegg, Austria, edited by H. Feldmeier, J. Knoll, W.
Norenberg, J. Wambach, (Darmstadt, GSI, 1999) p. 283.

9. A. Uno, H. Horiuchi, Phys. Rev. C 53, 2958 (1996).
10. B.G. Harvey, Nucl. Phys. A 444, 498 (1985).
11. A.J. Cole, Z. Phys. A 322, 315 (1985); A.J. Cole, Phys.

Rev. C 35, 117 (1987).
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